Enhanced emission of 2.9 μm from Ho³⁺/Pr³⁺ co-doped LiYF₄ crystal excited by 640 nm^{*}

PENG Jiang-tao (彭江涛)¹, XIA Hai-ping (夏海平)¹**, WANG Pei-yuan (汪沛渊)¹, HU Hao-yang (胡皓阳)¹, TANG Lei (唐磊)¹, ZHANG Yue-pin (张约品)¹, JIANG Hao-chuan (江浩川)², and CHEN Bao-jiu (陈宝玖)³

1. Key laboratory of Photo-electronic Materials, Ningbo University, Ningbo 315211, China

2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315211, China

3. Department of Physics, Dalian Maritime University, Dalian 116026, China

(Received 4 June 2013)

©Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2013

The use of Pr^{3+} co-doping for great enhancement of mid-infrared (mid-IR) emissions at 2.9 µm and 2.4 µm is investigated in the Ho³⁺/Pr³⁺ co-doped LiYF₄ crystals. With the introduction of Pr^{3+} ions, the fluorescence lifetime of Ho³⁺:⁵I₇ level is 2.15 ms for Ho³⁺/Pr³⁺ co-doped crystal, and the lifetime for Ho³⁺ singly doped crystal is 17.70 ms, while the lifetime of Ho³⁺:⁵I₆ level decreases slightly from 2.11 ms for Ho³⁺:LiYF₄ to 1.83 ms for Ho³⁺/Pr³⁺:LiYF₄. It is also demonstrated that the introduction of Pr³⁺ greatly increases the mid-infrared emission of Ho³⁺:⁵I₆→⁵I₇ which depopulates the Ho³⁺:⁵I₇ level, while it has little influence on the Ho³⁺:⁵I₆ level, which is beneficial for greater population inversion and laser operation. The analysis on the decay curves of the 2.0 µm emissions in the framework of the Ino-kuti-Hirayama model indicates that the energy transfer from Ho³⁺:⁵I₇ to Pr³⁺ is mainly from electric dipole-dipole interaction. The calculated efficiency of energy transfer from Ho³⁺:⁵I₇ to Pr³⁺:³F₂ level is 87.53% for Ho³⁺/Pr³⁺ (1.02%/0.22%) co-doped sample. Our results suggest that the Ho³⁺/Pr³⁺ co-doped LiYF₄ single crystals may have potential applications in mid-IR lasers.

Document code: A **Article ID:** 1673-1905(2013)05-0362-5 **DOI** 10.1007/s11801-013-3101-8

Ho³⁺ has been considered as a suitable ion for mid-infrared (mid-IR) emission with transition ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ at 2.9 µm. Some Ho³⁺ doped solid state materials were investigated for mid-IR laser^[1-4]. Previous work shows that sensitizers, such as Nd³⁺, in the Ho³⁺-doped LiYF₄ crystals could effectively quench the excited state population in the ${}^{5}I_{7}$ level. However, the population of the upper ${}^{5}I_{6}$ laser level was reduced, and the luminescence efficiency of the 2.9 µm emission was decreased by approximately 50%^[5]. Fortunately, with the introduction of Pr³⁺, the effective deactivation of the ${}^{5}I_{7}$ level of Ho³⁺ led to continuous wave (CW) output at 2.9 µm from Ho³⁺/Pr³⁺ co-doped ZBLAN-based fiber laser^[6], which motivates the search of new materials for mid-IR laser.

Because of their high mechanical strength and excellent chemical durability, fluoride crystals are more favorable as the host material for practical application than fluoride glasses. Moreover, the rigid symmetric structure of single crystal is beneficial for higher luminescence efficiency from the activator centers. The LiYF₄ crystal has been proved to be a suitable laser material because of its low maximum phonon energy, long fluorescence lifetime, low thermal lens effect and laser threshold, and ability to incorporate trivalent rare-earth ions which substitute for the Y³⁺ ions^[7]. Although the 2.9 µm mid-IR emission properties of Ho³⁺ doped and Ho³⁺/Nd³⁺ co-doped LiYF₄ crystals have been investigated^[4,5,8], the growth of Ho³⁺/Pr³⁺ co-doped LiYF₄ crystals and the effect of Pr³⁺ on the 2.9 µm emission in the crystal are rarely reported due to the difficulty of crystal growth.

In this paper, the Ho³⁺/Pr³⁺ co-doped LiYF₄ single crystal is grown by a modified Bridgman method. Pr³⁺ is explored as a sensitizer to improve the luminescence. With proper Ho³⁺ and Pr³⁺ ion concentrations and Pr³⁺ as a sensitizer, an enhanced emission at 2.9 μ m of Ho³⁺ is obtained under 640 nm excitation.

 ${\rm Ho}^{3+}$ singly doped and ${\rm Ho}^{3+}/{\rm Pr}^{3+}$ co-doped LiYF₄ crystals were grown by Bridgman method in a resistively heated furnace along <001> direction. Starting materials were prepared from stoichiometric mixture of 99.99% pure LiF, YF₃, HoF₃ and PrF₃ powder with the molar compositions of 51.5% LiF-47.5% YF₃-1% HoF₃ and 51.5% LiF-47% YF₃-1% HoF₃-0.5% PrF₃. Details of the growth procedure were described in Refs.[7,8]. The

^{*} This work has been supported by the National Natural Science Foundation of China (Nos.51272109 and 50972061), the Natural Science Foundation of Zhejiang Province (No.R4100364), the Natural Science Foundation of Ningbo in Zhejiang Province of China (No.2012A610115), and K. C. Wong Magna Fund in Ningbo University.

^{**} E-mail: hpxcm@nbu.edu.cn

X-ray power diffraction (XRD) was carried out to determine the crystal phase. By comparing the peak positions with those in JCPD 77-0816 of LiYF₄, one can confirm that the obtained crystal is of pure orthorhombic phase. The Ho³⁺ and Pr³⁺ concentrations in the crystals were measured by inductively coupled plasma (ICP). The molar concentrations of Ho3+ and Pr3+ were 1.02% and 0.22% in Ho³⁺/Pr³⁺ co-doped LiYF₄ crystals, and 1.02% in Ho³⁺ singly doped crystal. According to the measured density of crystals, the densities are calculated to be $3.011\times10^{20}\,\text{cm}^{\text{-3}}$ for $\text{Ho}^{3\text{+}}$ and 0.65 $\times10^{20}\,\text{cm}^{\text{-3}}$ for $\text{Pr}^{3\text{+}}$ in Ho^{3+}/Pr^{3+} co-doped LiYF₄ crystals, and 3.024×10^{20} cm⁻³ for Ho³⁺ in Ho³⁺ singly doped crystal. The samples for spectroscopic measurements were cut from the grown LiYF₄ crystals along <001> direction and polished to the thickness of 2.20 mm. The absorption spectra in the range from 200 nm to 2500 nm were measured using a U-4100 spectrophotometer. The emission spectra and fluorescence decay curves were tested with a Traix 320 type spectrometer (Jobin-Yvon Co., France) in the ranges of 1.0-1.8 µm and 1.8-3.02 µm excited by a 640 nm light. All measurements were carried out at room temperature.

As shown in Fig.1, nine absorption bands located at 358 nm, 416 nm, 448 nm, 472 nm, 482 nm, 536 nm, 638 nm, 1150 nm and 1932 nm can be seen in Ho^{3+} singly doped LiYF₄ crystal. These bands are ascribed to the transitions from the ground state ${}^{5}I_{8}$ to ${}^{3}H_{6}$, ${}^{3}G_{5}$, ${}^{5}G_{6}+{}^{5}F_{1}$, ${}^{5}F_{2}+{}^{3}K_{8}$, ${}^{5}F_{3}$, ${}^{5}F_{4}+{}^{5}S_{2}$, ${}^{5}F_{5}$, ${}^{5}I_{6}$, ${}^{5}I_{7}$ levels of Ho^{3+} ions, respectively. Four new bands appear at 2300 nm, 1530 nm, 1443 nm and 592 nm in the Ho^{3+}/Pr^{3+} co-doped LiYF₄ crystal. They are corresponding to the transitions from the ground state ${}^{3}H_{4}$ to ${}^{3}H_{6}$, ${}^{3}F_{3}$, ${}^{3}F_{4}$ and ${}^{1}D_{2}$ levels of Pr^{3+} ion, respectively.

Based on the measured absorption spectra shown in Fig.1, the absorption and emission cross sections for Ho³⁺ emissions at 1.2 μ m and 2.05 μ m are calculated by using Beer-Lambert equation and McCumber theory^[9]. The emission cross section $\sigma_{\rm em}$ can be calculated by:

$$\sigma_{\rm em}(\lambda) = \sigma_{\rm abs}(\lambda) \frac{Z_{\rm l}}{Z_{\rm u}} \exp[(E_{\rm zl} - hc / \lambda) / kT], \qquad (1)$$

where $\sigma_{abs}(\lambda) = \alpha(\lambda)/N$ represents the absorption cross section, $\alpha(\lambda)$ is absorption coefficient and N is the number of ions in the unit volume. Z_1 and Z_u are the partition functions of the lower and upper manifolds, respectively. Values of 0.8567 and 0.8052 for Z_l/Z_u can be used for the transitions of ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ (1.2 µm) and ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ (2.05 µm), respectively, as reported in Ref.[10]. E_{zl} is the zero-line energy, and is defined as the energy difference between the lowest Stark level of the upper manifold and the lowest Stark level of the lower manifold. The energy level reported for Ho³⁺:LiYF₄^[10] is used to calculate the zero-line energy for the manifolds studied. k is the Boltzmann's constant, and T is the absolute temperature (room temperature). The derived absorption and emission cross sections of 1.2 µm and 2.05 µm emissions for Ho³⁺:LiYF₄ crystal are calculated and shown in Fig.2.

Fig.1 Absorption spectra of Ho^{3+}/Pr^{3+} co-doped and Ho^{3+} singly doped LiYF₄ crystals

Fig.2 Absorption and emission cross sections for Ho³⁺ emissions at (a) 1.2 μ m and (b) 2.05 μ m for Ho³⁺:LiYF₄ crystal

The maximum emission cross sections of Ho^{3+} :LiYF₄ crystal located at 1.2 µm and 2.05 µm are 0.20×10^{-20} cm² and 0.51×10^{-20} cm², respectively. The value at 2.05 µm can be compared with that of Ho^{3+} :SrMoO₄ (0.271×10⁻²⁰ cm²)^[11], Ho^{3+} :SrWO₄(1.05×10⁻²⁰ cm²)^[12] and Ho^{3+} :Y₃Al₅O₁₂ (0.45×10⁻²⁰ cm²)^[13].

The two emission bands at 1.2 µm and 2.05 µm, which are attributed to ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ and ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transitions, respectively, can be observed in Fig.3(a). Compared with Ho³⁺ singly doped LiYF₄ crystal, two new strong emission bands at 2.4 µm and 2.9 µm corresponding to $Pr^{3+}: {}^{3}H_{6} \rightarrow {}^{3}H_{4}$ and $Ho^{3+}: {}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transitions appear in the Pr³⁺/Ho³⁺ co-doped sample. Evident emission enhancement at 1.2 µm and a significant emission suppression at 2.05 μ m are also observed from the Ho³⁺/Pr³⁺ co-doped LiYF₄ under excitation of 640 nm. Generally, the 1.2 µm emission corresponding to the transition ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ is only observed in low phonon energy host, such as fluoride^[10], chalcohalide^[14] and oxyfluoride glass ceramics^[15]. On the other hand, the broad emission at 2.0 µm usually results from the transition of Ho³⁺:⁵I₇ \rightarrow ⁵I₈, and was observed in many types of hosts including glasses^[2] and crystals^[10,16]. Its peak wavelength depends on the host material.

The possible mechanisms of the energy transfer processes between Ho3+ and Pr3+ have been reported in previous work^[17]. The energy level diagram for the $Ho^{3+}/$ Pr^{3+} co-doped LiYF₄ crystal is illustrated in Fig.3(c). Under 640 nm excitation, in Ho³⁺ singly doped LiYF₄ crystal, 2.9 μ m emission from the transition of ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ for Ho³⁺ ions is almost absent, whereas the intense fluorescences at 2.0 µm from the transition of ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ for Ho³⁺ ions and at 1.2 μ m ascribed to the Ho³⁺:⁵I₆ \rightarrow ⁵I₈ transition are observed. However, 2.9 µm fluorescence is much more efficient in Ho³⁺/Pr³⁺:LiYF₄ with the introduction of Pr³⁺ ions. Moreover, a significant reduction in the emission intensity of the ${}^{5}I_{7}$ level at 2.0 μ m is observed in the Ho³⁺ and Pr³⁺ co-doped sample, which justifies that Pr³⁺ ions can be used effectively to depopulate the Ho³⁺:⁵I₇ level. In Ho³⁺/Pr³⁺:LiYF₄ crystal, it is noted that there is an increase of 1.2 µm emission corresponding to transition ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$, which is not beneficial for making the population inversion of the upper 2.9 µm laser level (Ho³⁺:⁵I₆). It has been revealed that the Pr^{3+} ions can efficiently deactivate the first excited $({}^{5}I_{7})$ state of Ho³⁺ in Ho³⁺/Pr³⁺ co-doped glass, and the net effect introduced by the Pr³⁺ ion deactivation of the Ho³⁺ ion supports the fast recovery of the ground state of Ho^{3+} . It may be the reason for the increase of 1.2 µm emission.

Since the energy levels of ${}^{3}F_{2}$ of Pr^{3+} and ${}^{5}I_{7}$ of Ho^{3+} match very well as shown in Fig.3, the energy transfer $(Ho^{3+}:{}^{5}I_{7}, Pr^{3+}:{}^{3}H_{4}) \rightarrow (Ho^{3+}:{}^{5}I_{8}, Pr^{3+}:{}^{3}F_{2})$ can take place. The ions in $Pr^{3+}:{}^{3}F_{2}$ level nonradiatively decay to the lower $Pr^{3+}:{}^{3}H_{6}$ level, then radiatively decay to the $Pr^{3+}:{}^{3}H_{4}$ level, and emit a broadband emission around 2.4 μ m as observed in Fig.3(a). It further demonstrates the existence of the energy transfer process from Ho^{3+} to Pr^{3+} ions.

Fig.3 Infrared fluorescence spectra of Ho³⁺:LiYF₄ and Ho³⁺/ Pr³⁺:LiYF₄ crystals around (a) 1.2 μ m, 2.05 μ m, 2.4 μ m and (b) 2.9 μ m under excitation at 640 nm; (c) The energy level and energy transfer diagram when pumped at 640 nm

Under excitation at 640 nm, the measured decay curves for Ho³⁺: ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition at 2059 nm and ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ transition at 1191 nm in Ho³⁺:LiYF₄ and Ho³⁺/Pr³⁺:LiYF₄ samples are shown in Fig.4 and Fig.5, respectively.

In the Ho³⁺ singly doped LiYF₄ crystal, the fluorescent decays for Ho³⁺:⁵I₇→⁵I₈ and ⁵I₆→⁵I₈ transitions are well fitted into single-exponential decays. The fitting curves are shown in Fig.4(a) and Fig.5(a), and the fitted lifetime values of the ⁵I₇ and ⁵I₆ are 17.70 ms and 2.11 ms, respectively. The fluorescent decay of Ho³⁺:⁵I₆→⁵I₈ in Ho³⁺/Pr³⁺:LiYF₄ can also be fitted into single-exponential de-

PENG et al.

cay shown in Fig.5(b), and the lifetime of the ${}^{5}I_{6}$ is 1.83 ms. When Pr^{3+} and Ho^{3+} are co-doped, energy transfer from $Ho^{3+}:{}^{5}I_{7}$ to $Pr^{3+}:{}^{3}F_{2}$ level takes place, and the decay curve of the $Ho^{3+}/Pr^{3+}:LiYF_{4}$ is non-exponential. The average experimental lifetime is given by^[18]

$$\tau_{\rm avg} = \frac{\int I(t)tdt}{\int I(t)dt},\tag{2}$$

where I(t) is the luminescence intensity as a function of elapsed time *t*. With the introduction of Pr^{3+} , the measured lifetime of Ho^{3+} : SI_7 manifold is 2.15 ms in the Ho^{3+}/Pr^{3+} :LiYF₄ crystal, which is 87.85% shorter compared with that for the Ho^{3+} :LiYF₄ crystal (17.70 ms). The measured lifetime of Ho^{3+} : SI_6 level is 1.83 ms in the Ho^{3+}/Pr^{3+} :LiYF₄ crystal, which is 13.27% shorter than that for the Ho^{3+} :LiYF₄ crystal (2.11 ms). It confirms that the co-doping of Pr^{3+} ions has little influence on the higher laser level ${}^{5}I_6$ of Ho^{3+} , and depopulates the lower laser level Ho^{3+} : SI_7 for 2.9 µm emission in LiYF₄ crystal, which are beneficial for the population inversion and laser operation.

The decay curve in Fig.4(b) is best described by the Inokuti-Hirayama (I-H) model^[19], which can be expressed as:

Fig.4 Fluorescence decay curves of (a) Ho^{3+} :LiYF₄ and (b) Ho^{3+}/Pr^{3+} :LiYF₄ crystals at 2059 nm under excitation at 640 nm

Fig.5 Fluorescence decay curves of (a) Ho^{3+} :LiYF₄ and (b) Ho^{3+}/Pr^{3+} :LiYF₄ crystals at 1191 nm under excitation at 640 nm

where I_t and I_0 represent the luminescence intensities during decay and when time is 0, respectively, τ_0 is the intrinsic radiative transition lifetime, $\Gamma(1-3/s)$ is a Gamma function, which denotes the electric dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions between luminescent centers when s=6, 8 and 10, respectively, R_0 is the critical transfer distance, and N is the doping concentration. The fitting curve is shown in Fig.4(b). In the fitting processes, the value of s is assigned to about 5.9874, and it is very close to 6. It indicates that the energy transfer of electric dipole-dipole interaction is dominant in the Ho³⁺/Pr³⁺ co-doped samples.

As discussed above, the energy transfer from the $Ho^{3+}:{}^{5}I_{7}$ level to the $Pr^{3+}:{}^{3}F_{2}$ level can depopulate the lower laser level $Ho^{3+}:{}^{5}I_{7}$ and make the 2.9 μ m emission occur. The energy transfer efficiency can be estimated from the lifetime by^[20]

$$\eta_{\rm ET} = 1 - \frac{\tau_{\rm Ho/Pr}}{\tau_{\rm Ho}},\tag{4}$$

where $\tau_{\text{Ho/Pr}}$ and τ_{Ho} are the lifetime values monitored at 2059 nm in the Ho³⁺/Pr³⁺ co-doped and Ho³⁺ singly doped samples, respectively. So the derived energy transfer efficiency is found to be 87.53%, indicating a quenching effect of Pr³⁺:³F₂ level on Ho³⁺:⁵I₇ level. It is favorable for obtaining 2.9 µm emission from Ho³⁺/Pr³⁺:LiYF₄ crystal.

• 0366 •

In conclusion, Ho³⁺:LiYF₄ and Ho³⁺/Pr³⁺:LiYF₄ single crystals are grown by a modified Bridgman method. The IR emission spectra and fluorescence decay curves are obtained under excitation at 640 nm. The energy transfer from Ho³⁺:⁵I₇ level to Pr³⁺:³F₂ level takes place in Ho³⁺/Pr³⁺ co-existing crystal, which results in the depopulation of ${}^{5}I_{7}$ level and increases the emission at 2.9 µm. The fluorescence lifetime values of the higher and lower laser levels Ho3+:5I6, 5I7 for Ho3+ singly doped and Ho^{3+}/Pr^{3+} co-doped LiYF₄ crystals are investigated by using single exponential functions and the I-H model, and the transfer efficiency from Ho³⁺ to Pr³⁺ in $Ho^{3+}(1.02\%)/Pr^{3+}(0.22\%)$ co-doped LiYF₄ crystal is calculated. It is demonstrated that Pr³⁺ depopulates the Ho^{3+} : ⁵I₇ level, and has little influence on the Ho^{3+} : ⁵I₆ at the same time, which are both beneficial for the emission at 2.9 μ m. It is suggested that the Ho³⁺/Pr³⁺ co-doped LiYF₄ crystal may be a good candidate for 2.9 µm IR laser media.

References

- Wang X., Lin H., Yang D., Lin L. and Pun E. Y. B., J. Appl. Phys. 101, 113535 (2007).
- [2] Lee T. H. and Heo J., Phys. Rev. B 73, 144201 (2006).
- [3] Choi Y. G., Park B. J. and Kim K. H., Opt. Lett. 28, 622 (2003).
- [4] Karayianis N., Wortman D. E. and Jenssen H. P., J. Phys. Chem. Solids 37, 675 (1976).
- [5] Jagosich F. H., Gomes L., Tarelho L. V. G., Courrol L. C. and Ranieri I. M., J. Appl. Phys. 91, 624 (2002).

- [6] Jackson S. D., Electron. Lett. **39**, 772 (2003).
- [7] Fang Q. H., Chen H. B. and Xu F., Chin. Opt. Lett. 8, 1071 (2010).
- [8] Zhuang X. B., Xia H. P., Hu H. Y., Hu J. X., Wang P. Y., Peng J. T., Zhang Y. P., Jiang H. C. and Chen B. J., Mater. Sci. Eng. B **178**, 326 (2013).
- [9] McCumber D. E., Phys. Rev. **136**, A954 (1964).
- [10] Walsh B. M., Barnes N. P. and Bartolo B. D., J. Appl. Phys. 83, 2786 (1998).
- [11] Ma X. H., Zhu Z. J., Li J. F., You Z. Y., Wang Y., and Tu C. Y., Mater. Res. Bull. 44, 571 (2009).
- [12] Li J. F., Jia G. H., Zhu Z. J., You Z. Y., Wang Y., Wu B. C. and Tu C. Y., J. Phys. D: Appl. Phys. 40, 1902 (2007).
- [13] Johnson L. F., Geusic J. E. and Van Uitert L. G., Appl. Phys. Lett. 8, 200 (1966).
- [14] Tsang Y., Richards B., Binks D., Lousteau J. and Jha A., Opt. Lett. 33, 1282 (2008).
- [15] Driesen K., Tikhomirov V. K., Gorller-Walrand C., Rodriguez, V. D. and Seddon A.B., Appl. Phys. Lett. 88, 073111 (2006).
- [16] Tarelho L. V., Gomes L. and Ranieri I. M., Phys. Rev. B 56, 14344 (1997).
- [17] A. F. Henriques Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro and Y. Messaddeq, J. Appl. Phys. **101**, 1231117 (2007).
- [18] Tang Han and Xia Hai-ping, Optoelectron. Lett. 8, 456 (2012).
- [19] Inokuti M. and Hirayama F., J. Chem. Phys. 43, 1978 (1965).
- [20] Carnall W. T., Fields P. R. and Rajnak K., J. Chem. Phys. 49, 4407 (1968).